
Supernova burst trigger studies using machine 
learning for data selection

Guanqun Ge, Yeon-jae Jwa
Columbia University

1



Intro: ML based data selection

In DUNE-doc-11311, we introduced a two-level triggering scheme for SN bursts using CNN 
image classification.

Two-level triggering scheme includes 
1) Low-level: “APA-frame” CNN classification and selection, 
2) Module-level: SN burst triggering using “APA-frame” selection coincidence (across 

multiple APA’s and during the expected SN burst duration).
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https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=11311


Intro: ML based data selection
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Two-level triggering scheme: 

1. Low-level:
CNN-based
APA-frame
selection

2. Module-level:
APA-frame coincidence 
across module and
over 10 seconds
(SN burst trigger)



Intro: Low-level trigger 
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Applied on each APA-frame image (see backup slides for more details) independently.

APA-frame = 960 collection wires x 2.25 ms (time-tick frequency:2 MHz)

Each APA-frame is classified by a CNN according to its contents, as
SN/Low-energy interaction, 
High-energy interaction (inclusive of n-nbar, p-decay, atm. nu, cosmic), or 
None (only radiological backgrounds and noise) 

Note: 
This type of selection could in principle be applied at the front-end DAQ (given sufficient resources/power), or as a filtering 
stage after event building. For this talk, we consider the case of a front-end application of CNN classification and investigate 
subsequent burst trigger efficiency at module level. See docdb technote for more details: DUNE-doc-11311

https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=11311


Intro: Module-level trigger
● From CNN single frame selection, we find that 1E-4 background APA-frame 

reduction rate can be obtained, while SN interaction APA-frame efficiency is 69%. 
This means, 
○ For any given SN burst, we could record each SN interaction APA-frame with 

~69% efficiency, regardless of where the SN burst originated from. This can be 
done while keeping a steady-state data rate of 120 MB/s from the full 10kton 
module (dominated by the fake frame rate selection).

● We can introduce a second level of trigger decision involving an aggregated and 
prolonged scan of APA-frames searching for the signal of SN burst across the full 
10kton module.
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ML based data selection: Performance of two-level 
trigger
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SN probability weighted efficiency
Galactic coverage

(Galactic coverage is defined as 
integral of the ‘SN probability weighted 
efficiency’ plot from 0 kpc to 28 kpc.)

LMC



ML based data selection: Performance

With previous scheme (DUNE-doc-11311), we assume the CNN APA-frame selection efficiency 
is SN neutrino energy independent (we know it is not), and we also weigh each selected 
APA-frame equally in the burst trigger decision.

Improvements with new approach (subsequent slides): 
- Take into account energy vs. time dependency of the SN neutrinos, and corresponding 

energy-dependent CNN efficiency for APA-frame selection, for more realistic 
assumptions.

- Implement an “Energy Boosted Decision” algorithm in the burst triggering stage, 
where the (highest) deposited energy in the APA-frame is assumed to be available at 
the Module-level trigger stage. (Similar scheme suggested by Oxford and others in DAQ consortium for 
traditional approach.)
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https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=11311


The approach: Old & New
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CNN selects APA-frames 
with some efficiency

(SN, background)

Burst trigger on >M_cut 
with low fake rate

Using ‘flat’ efficiency from CNN so far 
does not take into account the energy 
dependency we have observed:

Burst tagging for 10s

Find the maximum 
multiplicity Mmax

Count the tagged 
APA-frames in N 

successive drift frames 
over 150 APAs                  
multiplicity M

Low-level

Module-
level



The approach: Old & New

9

CNN selects APA-frames 
with some efficiency

(SN, background) Using energy(true energy)-dependent 
efficiency of CNN for SN APA-frames

“Boost” counting using a weight based on 
APA-frame energy from the output of 
subsequent algorithm (If algorithm quickly 
predicts the ‘energy’ of the single frame).

What is the ‘energy’ we are talking about?
- Should be an estimator of SN neutrino 

deposited energy.
- Assuming burst triggering will veto 

high E events.
- The energy of most energetic single 

MCTruth in single frame. (check 
needed if this corresponds to SN 
neutrino energy)  

Low-level

Module-
level

Burst trigger on >M_cut 
with low fake rate

Burst tagging for 10s

Find the maximum 
multiplicity Mmax

Count the tagged 
APA-frames in N 

successive drift frames 
over 150 APAs                  
multiplicity M



Estimating energy at Low-/Module-level trigger stage:
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Possible options: 
1. Two sequential algorithms: APA-frame selector followed by energy classifier (CNN or otherwise), or,
2. Train the same CNN that selects APA-frames to also classify energy deposition in APA-frame

Option 1:
CNN1: Physics process classifier: 3 scores with SN, high-E, radiological background only frames.
CNN2: Energy classifier: Predict the energy in the frame and provide as extra information handle in burst 
triggering

SN, high-E, rad

SN Rad high-E

Energy (0 to 100 MeV)

0 to 5 
MeV

5 to 10 
MeV … 95 to 100 

MeV 

CNN1 classification goal CNN2 classification goal 
(example binning)
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Details      CNN1 gives

Energy dependent 
efficiency

Background efficiency
(not energy dependent)

2D neutrino flux 
distribution.

Averaged energy vs. 
time

Smeared energy 
distribution for each 
frame.

Tag signal frame
(use true energy)

Random energy
Boost event number 
(use smeared energy)

Calculate Multiplicity M, 
keep the largest one in 
the histo

Calculate trigger 
efficiency

Tag background frame

Random energy from 
smeared energy 
distribution for bkgd

Boost event number 

Calculate Multiplicity M, 
keep the largest one in 
the histo

In real analysis, 
the random 
energy from 
smeared energy 
distribution  will 
be given by CNN, 
too



Estimating energy with CNN2:
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If CNN2 can give quick and reliable energy classification, we can use the APA-frame weight in the 
multiplicity/burst trigger decision based on the classified energy.

nuE (3.85 MeV, 70.97 MeV)

Predicted deposited energy distributions:
Left: SN neutrino true energy;                            Middle: the largest MCParticle energy in one Rad. frame;      Right: MCParticle energy distribution (Rad.)

Radiological backgrounds and SN neutrinos have 
different deposited energy distributions.
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1. Energy-dependent CNN efficiency for APA-frame selection

● Energy dependent efficiency produced by CNN shows events with true energy larger 
than 15 MeV has efficiency larger than 69%.

● 2D SN timing profile (provided by Kate Scholberg) gives number of neutrino events 
with certain energy at different time.

Efficiency = 68.84%



● Integrating over energy gives 1D SN timing profile(number of events vs. time). 
Then it’s applied to a certain distance to obtain event distribution per APA.

● Averaging over energy gives averaged energy distribution. For each drift 
frame (starting with t=0), averaged true energy is found, then the 
corresponding CNN APA-frame selection efficiency(energy) is applied.
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1. Energy-dependent CNN efficiency for APA-frame selection

15 MeV

For supernova at distance L=10 kpc



● Comparison between result using energy-dependent efficiency and previous 
result 
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1. Energy-dependent CNN efficiency for APA-frame selection
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2. Energy boosted burst triggering
● For each tagged signal frame, vary the true averaged energy using a gaussian with 

mean=true energy, sigma=true energy*10% to simulate resolution of detector/CNN.
● Draw energy from this (smeared) distribution; if the drawn energy is larger than 10 

MeV, scale the event number in this frame linearly by a factor of (energy[MeV]/10).



● For background, flat background efficiency is used to tagg background frames. Energy 
boost in background frames will be applied once we have energy distribution for 
background events.

● After finishing energy boosting, multiplicity is calculated. Then a cut on multiplicity 
M_cut is applied to calculate burst trigger efficiency.

17

2. Energy boosted burst triggering
L=

28
 k

pc
, N

=4
0

Triggering efficiency: 19.21% Triggering efficiency: 99.93%

before after



Comparison between old & new scheme (for N=40):
Burst trigger efficiency vs. distance:
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LMC LMC



Comparison between old & new scheme (for N=40):
Galactic coverage
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Old scheme New scheme 

Galactic coverage 0.988443 0.999999

LMC coverage 0.000946 0.737089

Promising result with energy boosted burst trigger scheme: 
>99.9% galactic coverage and 73.7% LMC coverage
(assuming CNN2 can resolve energy to within 10% -- to be tested)



Summary and Conclusions 
● Energy boost triggering yields higher selection efficiency for signals.

● Future steps:

○ CNN2 training (for determining selected APA-frame highest-deposited energy)

○ Apply energy boost weight to both SN and background (based on CNN2 results)

○ Try different energy boosting algorithms to maximize burst trigger efficiency

○ Study latency and power requirements for burst trigger decision

○ Consider a variety of SN time-energy evolution templates 

(how sensitive are we to time profile of SN neutrino flux?)
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Back up
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Selection efficiency vs. Neutrino energy
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E.g., high-energy (event) frame image input to CNN
(before downsampling)

High-E(atmospheric)
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E.g., background frame image input to CNN
(before downsampling)

Radiologicals + noise
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E.g., supernova frame image input to CNN
(before downsampling)

SN
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Frame selection efficiency, requiring low RAD score

- From 3-class training of CNN (SN, background, and High-E)
- Classification definition: Keep events that satisfy RAD score cut.
- Efficiencies are shown separately on each exclusive frame type (SN, n-nbar, atmo. nu, p-decay, 
cosmic); note: only one interaction per frame assumed.

RAD 
score 
cut

RAD 
frame 
efficiency

Data rate (RAD) SN 
frame 
efficiency

n-nbar 
frame 
efficiency

atmo. nu 
frame 
efficiency

p-decay 
frame 
efficiency

cosmic 
frame 
efficiency

<0.05 0.56%
(99.44% rejection)

6.4 GB/s (201 PB/year) 89% 100% 92% 99% 92%

<0.01 0.18%
(99.82% rejection)

2.05 GB/s (65 PB/year) 86% 100% 91% 99% 92%

<0.001 0.031%
(99.969% rejection)

350 MB/s (11 PB/year) 77% 100% 89% 98% 90%

<0.0002 0.011%
(99.989% rejection)

125 MB/s (3.9 PB/year) 69% 100% 87% 97% 88%
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CNN-based data selection in more detail

● Each collection plane frame is classified by a CNN (VGG16b) network trained on a set of 
frames containing (1) supernova neutrino interactions, (2) high-energy off-beam 
interactions (including atmospheric, n-nbar, cosmic, p decay), and (3) radiological-only 
background. 
○ Each collection plane frame corresponds to 1APA x 1 drift time (960 collection plane 

wires  x 2.25 ms x 2 MHz digitization, raw digits). Frames are downsampled to meet 
CNN input requirements (input image is 600x600 pixels) for the training and the 
inference.

○ Signal frames (SN, High-E) are defined as the ones containing true interaction vertex, 
but may only partially contain interaction final states.

● The network is trained to produce 3 scores for each frame: RAD, SN, High-E. Frames are 
kept according to their RAD score. (We keep frames with very low RAD score.)
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CNN-based SN burst trigger study
● Supernova timing profile lasts as long as 10s, which corresponds to 4445 frames. 

SN burst trigger aims to scan 200 collection plane drift volumes for 10 sec (4445 
frames) to obtain better efficiency than ~69% of one frame per APA efficiency.

● SN neutrino event rate, timing profile (provided by Kate Scholberg; same as for 
traditional hit finding study; see the previous talk) is applied to a given distance, in 
order to obtain the event rate per frame for 10s (=4445 frames).
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Expected number of events for a given supernova distance

(for the first 50ms, 
a zoomed in version
of the time distribution
is used)



CNN-based SN burst trigger study

When each frame across 10s is filled with event distribution, Poisson fluctuations are 
applied and our selection efficiencies from CNN (68.84% for SN filled frame, 0.011% 
for empty frame), for both SN bursts and background.

29
1 frame=2.25ms
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      N       N 
Sum over APAs

Tagged frame multiplicity for a single APA (collection planes) 
and 200 APA (collection planes)

For a SN burst at 10kpc (plus background), a block size of N frames strides from 0s to 10s.

Over 200 APA collection planes, the multiplicity is calculated to be:
tagged number of frames within the window of N-successive-frames over 200 APA collection 
plane frames.
N-successive-frames window strides from the first frame to the end.

Multiplicity as a function of 
the starting frame of 
N-successive-frames
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      N       N 
Sum over APAs

For a SN burst at 10kpc (plus background), a block size of N frames strides from 0s to 10s.

Over 200 APA collection planes, the multiplicity is calculated to be:
tagged number of frames within the window of N-successive-frames over 200 APA collection 
plane frames.
N-successive-frames window strides from the first frame to the end.

Tagged frame multiplicity for a single APA (collection planes) 
and 200 APA (collection planes)

Multiplicity as a function of 
the starting frame of 
N-successive-frames
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Sum over APAs

For a background, a block size of N frames strides from 0s to 10s.

Over 200 APA collection planes, the multiplicity is calculated to be:
tagged number of frames within the window of N successive frames over 200 APA collection 
plane frames.
N successive frame window strides from the first frame and to the end.

Tagged frame multiplicity for a single APA (collection planes) 
and 200 APA (collection planes)

      N       N 
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SN multiplicity over N=20 at 10kpc
Maximum multiplicity of the SN burst : 45

background multiplicity over N=20 at 10kpc
Maximum multiplicity of the fake burst : 6

Maximum multiplicities for signal and background 
for 10s X 200 APA collection planes

Multiplicity as a function of 
the starting frame of 
N-successive-frames



Maximum Multiplicity Spectra: SN at L=10kpc
Integration N=20 across 200 collection planes for 520k bursts
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Overlayed multiplicity spectra @ L=10kpc, N=20

background

signal

Place M_cut where we can 
reject background.

For L=10kpc, N=20, we could 
efficiently cut background 
(fake rate <= 1/month) and get 
~100% SN burst efficiency.

M_cut
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Overlaid maximum multiplicity spectra
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As N gets larger, maximum multiplicity 
value gets larger.  

As distance gets larger, maximum 
multiplicity value gets smaller.


